Oxygen isotopes of phosphatic compounds—Application for marine particulate matter, sediments and soils

نویسندگان

  • Karen McLaughlin
  • Adina Paytan
  • Carol Kendall
  • Steven Silva
چکیده

The phosphate oxygen isotopic composition in naturally occurring particulate phosphatic compounds (y18Op) can be used as a tracer for phosphate sources and to evaluate the cycling of phosphorus (P) in the environment. However, phosphatic compounds must be converted to silver phosphate prior to isotopic analysis, a process that involves digestion of particulate matter in acid. This digestion will hydrolyze some of the phosphatic compounds such that oxygen from the acid solution will be incorporated into the sample as these phosphatic compounds are converted to orthophosphate (PO4 3 ). To determine the extent of incorporation of reagent oxygen into the sample, we digested various phosphatic compounds in both acid amended with H2 O (spiked) and unspiked acid and then converted the samples to silver phosphate for y18Op analysis. Our results indicate that there is no isotopic fractionation associated with acid digestion at 50 8C. Furthermore, we found that reagent oxygen incorporation is a function of the oxygen to phosphorus ratio (O:P) of the digested compound whereby the percentage of reagent oxygen incorporated into the sample is the same as that which is required to convert all of the P-compounds into orthophosphate. Based on these results, we developed a correction for reagent oxygen incorporation using simple mass balance, a procedure that allows for the determination of the y18Op of samples containing a mixture of phosphatic compounds. We analyzed a variety of environmental samples for y 18Op to demonstrate the utility of this approach for understanding sources and cycling of P. D 2005 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preservation of particulate non-lithogenic uranium in marine sediments

Particulate non-lithogenic uranium (PNU), excess U above detrital background levels found in marine particulate matter, is formed in surface waters throughout the ocean. Previous studies have shown that PNU is regenerated completely prior to burial of particles in sediments within well-oxygenated open-ocean regions. However, the fate of PNU has never been examined in ocean margin regions or in ...

متن کامل

Phosphorus imbalance in the global ocean?

[1] The phosphorus budget of the prehuman modern ocean is constrained applying the most recent estimates of the natural riverine, eolian, and ice‐rafted input fluxes; the phosphorus burial in marine sediments; and the hydrothermal removal of dissolved phosphate from the deep ocean. This review of current flux estimates indicates that the phosphorus budget of the ocean is unbalanced since the ac...

متن کامل

Tracing tetraether lipids from source to sink in the Rhône River system (NW Mediterranean)

In this study, we investigated soils and river suspended particulate matter (SPM) collected in the Rhône and its tributary basins as well as marine surface sediments taken in the Rhône prodelta (Gulf of Lions, NW Mediterranean). Thereby, we traced the signal of branched glycerol dialkyl glycerol tetraethers (brGDGTs) from the source to sink via the Rhône River and its tributaries and identified...

متن کامل

Temperature-driven decoupling of key phases of organic matter degradation in marine sediments.

The long-term burial of organic carbon in sediments results in the net accumulation of oxygen in the atmosphere, thereby mediating the redox state of the Earth's biosphere and atmosphere. Sediment microbial activity plays a major role in determining whether particulate organic carbon is recycled or buried. A diverse consortium of microorganisms that hydrolyze, ferment, and terminally oxidize or...

متن کامل

Isotopic compositions of lipid biomarker compounds in estuarine plants and surface sediments

We examined the isotopic compositions of fatty acids, sterols, and hydrocarbons isolated from three coastal macrophytes (Z&era marina, Spartina alternifora, and Juncus roemerianclfs) in order to investigate the relative contribution of these vascular plants as sources of organic matter in coastal sediments such as Cape Lookout Bight, North Carolina. On average, lipid biomarker compounds extract...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006